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Abstract: 

Mechanical creep is a time-dependent deformation phenomenon observed in materials subjected to 

constant or sustained mechanical loads at elevated temperatures. This paper presents a comprehensive 

review of mechanical creep, covering its fundamental principles, influencing factors, and implications 

across various engineering disciplines. We discuss the mechanisms of creep deformation, methods of 

creep testing, and the effects of temperature and stress on creep behavior. Additionally, we explore 

recent advancements in modeling and predicting creep in materials and components, as well as its 

significance in engineering applications. 

 

1. Introduction 

Mechanical creep is a critical consideration in engineering design and materials selection, especially in 

applications involving elevated temperatures and long-term mechanical loading. Understanding the 

mechanisms and behavior of creep is crucial for ensuring the safety and reliability of structures and 

components exposed to such conditions. This paper provides an in-depth examination of mechanical 

creep, its causes, testing methods, and significance in engineering practice. 

 

2. Fundamentals of Mechanical Creep 

2.1 Definition 

Mechanical creep is the time-dependent deformation of materials under a sustained or constant 

mechanical load, typically occurring at elevated temperatures. Unlike instantaneous elastic deformation, 

creep deformation takes place gradually over time and may lead to permanent changes in shape and 

dimensions. 

 

2.2 Mechanisms of Creep Deformation 

Creep deformation is governed by several mechanisms, including: 

- Dislocation creep: Movement of dislocations within the material's crystal structure. 

- Diffusion creep: Migration of atoms or molecules through the crystal lattice. 

- Grain boundary sliding: Sliding of grains or crystal boundaries relative to each other. 

 

3. Factors Influencing Creep Behavior 

The creep behavior of materials is influenced by various factors, such as temperature, stress level, 

material composition, and microstructure. Elevated temperatures are a primary driver of creep, as they 



enhance atomic mobility and facilitate the deformation mechanisms mentioned above. Higher stress 

levels and longer exposure times also exacerbate creep deformation. 

 

4. Creep Testing 

Creep testing is essential for characterizing a material's creep behavior and predicting its performance 

under specific conditions. Common creep testing methods include constant load tests, constant stress 

tests, and constant strain tests. These tests help establish creep curves, which illustrate the relationship 

between creep strain and time. 

 

5. Effects of Temperature and Stress 

Temperature and stress play pivotal roles in creep behavior. Higher temperatures promote faster creep 

rates, while higher stresses accelerate creep deformation. The Larson-Miller parameter is a widely used 

empirical relation to predict creep life based on temperature and stress. 

 

6. Engineering Applications 

6.1 Power Generation 

Creep-resistant materials are crucial in power generation industries, such as nuclear and fossil fuel 

power plants, where components operate at elevated temperatures and under continuous mechanical 

loads. 

 

6.2 Aerospace 

Aerospace applications, including gas turbine engines and aircraft components, require materials with 

excellent creep resistance to withstand high-temperature and high-stress conditions. 

 

6.3 Structural Engineering 

In civil engineering, creep considerations are vital for the long-term performance of concrete structures 

and bridges, particularly in high-temperature environments. 

 

7. Recent Advancements and Emerging Trends 

Advancements in materials science, including the development of superalloys and composite materials 

with enhanced creep resistance, have expanded the possibilities for high-temperature applications. 

Additionally, sophisticated modeling and simulation techniques enable engineers to predict and mitigate 

creep-related issues in complex structures more effectively. 



 

8. Conclusion 

Mechanical creep is a complex and time-dependent deformation phenomenon that has significant 

implications in various engineering disciplines. A comprehensive understanding of the mechanisms, 

factors, and testing methods associated with creep behavior is essential for designing materials and 

structures that can withstand prolonged exposure to elevated temperatures and mechanical loads. As 

technology continues to advance, the ability to predict and control creep deformation will remain 

critical for ensuring the safety and reliability of engineering components and systems.[1–36] 

[8,9,18,25,34][37] 
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