Brief of Impact of Spatial Configuration on Topology Optimization Designs: A Scientific Summary

DR. M ALALI

Abstract:

Topology optimization is a powerful computational technique used in engineering and design to determine the optimal distribution of material within a given design domain. It aims to optimize the structural performance by identifying the optimal arrangement of materials or voids. However, the spatial configuration of the design domain can significantly influence the outcomes of topology optimization. This scientific summary explores the effects of spatial configuration on topology optimization designs and highlights key findings and considerations for researchers and practitioners.

Introduction:

Topology optimization has gained widespread attention in various fields, including structural engineering, aerospace design, and additive manufacturing. It enables the creation of efficient and lightweight structures by maximizing performance metrics such as stiffness, strength, or energy absorption. While topology optimization algorithms offer a high degree of flexibility, the spatial configuration of the design domain can impact the resulting optimized designs.

Spatial Configuration Factors:

Several factors related to the spatial configuration influence topology optimization designs. These factors include the size and shape of the design domain, boundary conditions, and the presence of obstacles or functional constraints. The overall arrangement of these factors affects the design space available for optimization and can lead to variations in the optimized results.

Design Domain Size and Shape:

The size and shape of the design domain play a crucial role in topology optimization. Larger design domains provide more freedom for material redistribution, potentially resulting in complex and intricate designs. On the other hand, smaller design domains limit the available design space, leading to more constrained and simplified designs. Similarly, the shape of the design domain influences the structural layout and the distribution of material or voids.

Boundary Conditions:

The boundary conditions applied to the design domain significantly affect the optimized designs. Fixed or prescribed displacements at certain boundaries can induce stress concentrations and influence the material distribution within the design domain. Varying boundary conditions may lead to different optimized designs due to the altered load paths and structural responses.

Obstacles and Constraints:

The presence of obstacles or functional constraints within the design domain impacts the optimized designs. These obstacles restrict the flow of material and influence the connectivity of structural elements. Additionally, constraints related to manufacturing limitations, assembly requirements, or performance specifications can further affect the optimized topology.

Sensitivity to Spatial Configuration:

Topology optimization designs are sensitive to changes in spatial configuration parameters. Even small modifications in design domain size, shape, or boundary conditions can result in significantly different optimized solutions. Sensitivity analysis techniques can be employed to quantify the impact of spatial configuration on the final designs.

Design Guidelines and Considerations:

To account for the effects of spatial configuration in topology optimization, designers and researchers should consider the following guidelines:

Conduct sensitivity analyses to understand the impact of design domain parameters.

Perform multiple optimization runs with different spatial configurations to assess design variability.

Incorporate realistic constraints and manufacturing considerations within the optimization process.

Validate and verify the optimized designs through physical testing and simulations.

Conclusion:

Spatial configuration plays a vital role in topology optimization designs. The size, shape of the design domain, boundary conditions, and the presence of obstacles or constraints significantly influence the optimized solutions. Understanding and accounting for these factors are crucial for achieving reliable and practical topology optimization designs that meet the desired performance requirements. Further research and development are necessary to explore advanced optimization techniques that can adapt to varying spatial configurations effectively.

References

- [1] R.S. Abass, M. Al Ali, M. Al Ali, Shape And Topology Optimization Design For Total Hip Joint Implant, in: Proc. World Congr. Eng., 2019.
- [2] M. Al Ali, A. Takezawa, M. Kitamura, Comparative study of stress minimization using topology optimization and morphing based shape optimization comparative study of stress minimization using topology optimization and morphing based shape optimization, in: Asian Congr. Struct. Multidiscip. Optim., 2018.
- [3] M. Fujioka, M. Shimoda, M. Al Ali, Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness, Struct. Multidiscip. Optim. 65 (2022) 211. https://doi.org/10.1007/s00158-022-03304-y.
- [4] 藤岡みなみ,下田昌利, A.L.I. Musaddiq Al, 所望変形を実現するマルチスケール構造の同時形状最適化,計算力学講演会講演論文集. 2021.34 (2021) 3.
 https://doi.org/10.1299/jsmecmd.2021.34.003.
- [5] M.H. Faidh-Allah, M.A.M. Kadem, OPTIMAL DESIGN OF MODERATE THICK LAMINATED COMPOSITE PLATES UNDER STATIC CONSTRAINTS USING REAL CODING GENETIC ALGORITHM, J. Eng. 17 (2011).
- [6] M.A. Al-Ali, M.A. Al-Ali, A. Takezawa, M. Kitamura, Topology optimization and fatigue analysis of temporomandibular joint prosthesis, World J. Mech. 7 (2017) 323–339.
- [7] M. Al Ali, M. Shimoda, B. Benaissa, M. Kobayashi, Concurrent Multiscale Hybrid Topology Optimization for Light Weight Porous Soft Robotic Hand with High Cellular Stiffness, in: Proc. Int. Conf. Steel Compos. Eng. Struct. ICSCES 2022, 2023: pp. 265–278. https://doi.org/10.1007/978-3-031-24041-6_22.
- [8] M. Al Ali, A.Y. Sahib, M. Al Ali, Design Light Weight Emergency Cot With Enhanced Spinal Immobilization Capability, in: 6th Asian/Australian Rotorcr. Forum Heli Japan, 2017: pp. 1–11.
- [9] M. Al Ali, M. Shimoda, Investigation of concurrent multiscale topology optimization for designing lightweight macrostructure with high thermal conductivity, Int. J. Therm. Sci. 179 (2022) 107653. https://doi.org/10.1016/j.ijthermalsci.2022.107653.
- [10] Musaddiq Al Ali, Toward fully autonomous structure design based on topology optimization and image processing, in: Proc. 6th IIAE Int. Conf. Intell. Syst. Image Process. 2018, 2018: pp. 1–7.
- [11] M. Al Ali, Toward fully autonomous structure design based on topology optimization and image processing, in: Proc. 6th IIAE Int. Conf. Intell. Syst. Image Process., The Institute of Industrial Applications Engineers, 2018.
- [12] M. Al Ali, A. Takezawa, M. Kitamura, Comparative study of stress minimization using topology optimization and morphing based shape optimization comparative study of stress minimization using topology optimization and morphing based shape optimization, (2019).
- [13] D.M. Abdulah, D.H. Musa, Insomnia and stress of physicians during COVID-19 outbreak,

Sleep Med. X. 2 (2020) 100017.

- [14] M. Shimoda, M. Umemura, M. Al Ali, R. Tsukihara, Shape and topology optimization method for fiber placement design of CFRP plate and shell structures, Compos. Struct. 309 (2023) 116729. https://doi.org/10.1016/j.compstruct.2023.116729.
- [15] M. Al Ali, M. Al Ali, R.S. Saleh, A.Y. Sahib, Fatigue Life Extending For Temporomandibular Plate Using Non Parametric Cascade Optimization, in: Proc. World Congr. Eng. 2019, 2019: pp. 547–553.
- [16] M. Al Ali, M. Shimoda, Toward Concurrent Multiscale Topology Optimization for High Heat Conductive and Light Weight Structure, in: S. Koshizuka (Ed.), 15th World Congr. Comput. Mech. 8th Asian Pacific Congr. Comput. Mech., CIMNE, 2022: p. 12. https://doi.org/10.23967/wccm-apcom.2022.118.
- [17] M. Al Ali, Design offshore spherical tank support using shape optimization, in: Proc. 6th IIAE Int. Conf. Intell. Syst. Image Process., 2018.
- [18] M.S. Musaddiq Al Ali, Concurrent Multiscale Topology Optimization for Designing Displacement Inverter, in: 15th World Congr. Comput. Mech. 8th Asian Pacific Congr. Comput. Mech., 2022: pp. 1–10. https://doi.org/10.23967/wccm-apcom.2022.027.
- [19] N. Amoura, B. Benaissa, M. Al Ali, S. Khatir, Deep Neural Network and YUKI Algorithm for Inner Damage Characterization Based on Elastic Boundary Displacement, in: Proc. Int. Conf. Steel Compos. Eng. Struct. ICSCES 2022, 2023: pp. 220–233.
- [20] M. Al Ali, M. Al Ali, A.Y. Sahib, R.S. Abbas, Design Micro-piezoelectric Actuated Gripper for Medical Applications, in: Proc. 6th IIAE Int. Conf. Ind. Appl. Eng. 2018, The Institute of Industrial Application Engineers, 2018: pp. 175–180. https://doi.org/10.12792/iciae2018.036.
- M. Fujioka, M. Shimoda, M. Al Ali, Concurrent Shape Optimization for Multiscale Structure with Desired Static Deformation, Proc. Comput. Mech. Conf. 2021.34 (2021) 3. https://doi.org/10.1299/jsmecmd.2021.34.003 (in Japanese).
- [22] M. Torisaki, M. Shimoda, M. Al Ali, Shape optimization method for strength design problem of microstructures in a multiscale structure, Int. J. Numer. Methods Eng. 124 (2023) 1748–1772. https://doi.org/10.1002/nme.7186.
- [23] M. Al Ali, A.Y. Sahib, M. Al Ali, Teeth implant design using weighted sum multi-objective function for topology optimization and real coding genetic algorithm, in: 6th IIAE Int. Conf. Ind. Appl. Eng. 2018, The Institute of Industrial Applications Engineers, Japan, 2018: pp. 182–188. https://doi.org/10.12792/iciae2018.037.
- [24] M. Torisaki, M. Shimoda, M. Al Ali, Shape optimization method for strength design problem of microstructures in a multiscale structure, Int. J. Numer. Methods Eng. (2022).
- [25] M. Fujioka, M. Shimoda, M. Al Ali, Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness, Struct. Multidiscip. Optim. 65 (2022) 1–27. https://doi.org/10.1007/s00158-022-03304-y.
- [26] M. Al Ali, M. Shimoda, On concurrent multiscale topology optimization for porous structures under hygro-thermo-elastic multiphysics with considering evaporation, Int. J.

Numer. Methods Eng. (2023) 1–13. https://doi.org/10.1002/nme.7245.

- [27] M. Torisaki, M. Shimoda, M. Al Ali, Shape optimization method for strength design problem of microstructures in a multiscale structure, Int. J. Numer. Methods Eng. 124 (2023) 1748–1772. https://doi.org/10.1002/nme.7186.
- [28] R.S. Abass, M. Al Ali, M. Al Ali, Shape And Topology Optimization Design For Total Hip Joint Implant, in: World Congr. Eng. 2019, 2019.
- [29] M. Al Ali, M. Shimoda, Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB, Struct. Multidiscip. Optim. 65 (2022) 207.
- [30] M. Fujioka, M. Shimoda, M. Al Ali, Shape optimization of periodic-microstructures for stiffness maximization of a macrostructure, Compos. Struct. 268 (2021) 113873. https://doi.org/10.1016/j.compstruct.2021.113873.
- [31] M.S. Musaddiq Al Ali, Toward Concurrent Multiscale Topology Optimization for High Heat Conductive and Light Weight Structure, in: 15th World Congr. Comput. Mech. 8th Asian Pacific Congr. Comput. Mech., 2022: pp. 1–12. https://doi.org/10.23967/wccmapcom.2022.118.
- [32] M. Al Ali, M. Shimoda, Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB, Struct. Multidiscip. Optim. 65 (2022) 1–26. https://doi.org/10.1007/s00158-022-03291-0.