Parallel Computing

By Dr. M. ALALI

Abstract:

Parallel computing is a method of processing data simultaneously by breaking down large problems into smaller, more manageable ones that can be solved concurrently. This approach has become increasingly popular in recent years due to the rise of big data and the need for faster, more efficient processing. In this essay, we will explore the history of parallel computing, its advantages and challenges, and its applications in various fields.

Introduction:

Parallel computing is a technique that has been around for decades, but its use has become more prevalent in recent years due to the explosion of data and the need for faster and more efficient processing. This technique involves breaking down a large task into smaller, more manageable pieces that can be solved concurrently. This allows for faster processing times and increased efficiency. In this essay, we will explore the history of parallel computing, its advantages and challenges, and its applications in various fields.

History of Parallel Computing:

Parallel computing has its roots in the early days of computing. In the 1950s and 1960s, researchers began exploring the idea of parallel processing as a means of increasing computing power. In the 1970s and 1980s, this idea gained traction with the development of multiprocessor systems and supercomputers. These systems allowed for the execution of multiple tasks simultaneously, which significantly increased computing power.

Advantages of Parallel Computing:

The primary advantage of parallel computing is its ability to process large amounts of data quickly and efficiently. This technique is particularly useful in fields such as scientific research, finance, and artificial intelligence, where massive amounts of data need to be processed in a short amount of time. Additionally, parallel computing can be used to solve problems that are too large or complex for a single processor to handle.

Challenges of Parallel Computing:

While parallel computing offers many advantages, it also presents several challenges. One of the primary challenges is the development of algorithms that can be parallelized. Not all algorithms can be parallelized, and even those that can often require significant modifications to work in a parallel environment. Additionally, parallel computing systems require specialized hardware and software, which can be costly.

Applications of Parallel Computing:

Parallel computing has applications in various fields, including scientific research, finance, and artificial intelligence. In scientific research, parallel computing is used to process large datasets, simulate complex systems, and model physical phenomena. In finance, parallel computing is used for risk analysis, portfolio optimization, and high-frequency trading. In artificial intelligence, parallel computing is used to train machine learning models, process natural language, and analyze images and videos.

Conclusion:

Parallel computing is a powerful technique for processing large amounts of data quickly and efficiently. While it presents challenges such as algorithm development and specialized hardware and software requirements, its advantages make it an essential tool in various fields. As data continues to grow and become more complex, parallel computing will become increasingly vital for processing it efficiently

References

- M.S. Musaddiq Al Ali, Concurrent Multiscale Topology Optimization for Designing Displacement Inverter, in: 15th World Congr. Comput. Mech. 8th Asian Pacific Congr. Comput. Mech., 2022: pp. 1–10. https://doi.org/10.23967/wccm-apcom.2022.027.
- [2] M. Fujioka, M. Shimoda, M. Al Ali, Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness, Struct. Multidiscip. Optim. 65 (2022) 211. https://doi.org/10.1007/s00158-022-03304-y.
- [3] M.S. Musaddiq Al Ali, Toward Concurrent Multiscale Topology Optimization for High Heat Conductive and Light Weight Structure, in: 15th World Congr. Comput. Mech. 8th Asian Pacific Congr. Comput. Mech., 2022: pp. 1–12. https://doi.org/10.23967/wccm-apcom.2022.118.
- [4] M. Fujioka, M. Shimoda, M. Al Ali, Shape optimization of periodic-microstructures for stiffness maximization of a macrostructure, Compos. Struct. 268 (2021) 113873. https://doi.org/10.1016/j.compstruct.2021.113873.
- [5] M. Torisaki, M. Shimoda, M. Al Ali, Shape optimization method for strength design problem of microstructures in a multiscale structure, Int. J. Numer. Methods Eng. 124 (2023) 1748–1772. https://doi.org/10.1002/nme.7186.
- [6] M. Al Ali, A.Y. Sahib, M. Al Ali, Teeth implant design using weighted sum multi-objective function for topology optimization and real coding genetic algorithm, in: 6th IIAE Int. Conf. Ind. Appl. Eng. 2018, The Institute of Industrial Applications Engineers, Japan, 2018: pp. 182–188. https://doi.org/10.12792/iciae2018.037.
- [7] M. Fujioka, M. Shimoda, M. Al Ali, Concurrent Shape Optimization for Multiscale Structure with Desired Static Deformation, Proc. Comput. Mech. Conf. 2021.34 (2021) 3. https://doi.org/10.1299/jsmecmd.2021.34.003 (in Japanese).
- [8] N. Amoura, B. Benaissa, M. Al Ali, S. Khatir, Deep Neural Network and YUKI Algorithm for Inner Damage Characterization Based on Elastic Boundary Displacement, in: Proc. Int. Conf. Steel Compos. Eng. Struct. ICSCES 2022, 2023: pp. 220–233.
- [9] M. Al Ali, M. Al Ali, R.S. Saleh, A.Y. Sahib, Fatigue Life Extending For Temporomandibular Plate Using Non Parametric Cascade Optimization, in: Proc. World Congr. Eng. 2019, 2019: pp. 547–553.

http://www.iaeng.org/publication/WCE2019/WCE2019_pp547-553.pdf.

- [10] M. Al Ali, M. Shimoda, B. Benaissa, M. Kobayashi, Concurrent Multiscale Hybrid Topology Optimization for Light Weight Porous Soft Robotic Hand with High Cellular Stiffness, in: Proc. Int. Conf. Steel Compos. Eng. Struct. ICSCES 2022, 2023: pp. 265–278. https://doi.org/10.1007/978-3-031-24041-6_22.
- [11] M. Al Ali, M. Shimoda, Toward Concurrent Multiscale Topology Optimization for High Heat Conductive and Light Weight Structure, in: S. Koshizuka (Ed.), 15th World Congr. Comput. Mech. 8th Asian Pacific Congr. Comput. Mech., CIMNE, 2022: p. 12. https://doi.org/10.23967/wccm-apcom.2022.118.
- [12] M.A. Al-Ali, M.A. Al-Ali, A. Takezawa, M. Kitamura, Topology optimization and fatigue analysis of temporomandibular joint prosthesis, World J. Mech. 7 (2017) 323–339.
- [13] M. Shimoda, M. Umemura, M. Al Ali, R. Tsukihara, Shape and topology optimization method for fiber placement design of CFRP plate and shell structures, Compos. Struct. 309 (2023) 116729. https://doi.org/10.1016/j.compstruct.2023.116729.
- [14] M. Al Ali, M. Shimoda, Investigation of concurrent multiscale topology optimization for designing lightweight macrostructure with high thermal conductivity, Int. J. Therm. Sci. 179 (2022) 107653. https://doi.org/10.1016/j.ijthermalsci.2022.107653.
- [15] M. Al Ali, A. Takezawa, M. Kitamura, Comparative study of stress minimization using topology optimization and morphing based shape optimization comparative study of stress minimization using topology optimization and morphing based shape optimization, (2019).
- [16] M. Fujioka, M. Shimoda, M. Al Ali, Concurrent shape optimization of a multiscale structure for controlling macrostructural stiffness, Struct. Multidiscip. Optim. 65 (2022) 1–27. https://doi.org/10.1007/s00158-022-03304-y.
- [17] M. Al Ali, M. Shimoda, Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB, Struct. Multidiscip. Optim. 65 (2022) 1–26. https://doi.org/10.1007/s00158-022-03291-0.
- [18] M. Al Ali, M. Shimoda, Toward multiphysics multiscale concurrent topology optimization for lightweight structures with high heat conductivity and high stiffness using MATLAB, Struct. Multidiscip. Optim. 65 (2022) 207.
- [19] R.S. Abass, M. Al Ali, M. Al Ali, Shape And Topology Optimization Design For Total Hip Joint Implant, in: World Congr. Eng. 2019, 2019.
- [20] M. Torisaki, M. Shimoda, M. Al Ali, Shape optimization method for strength design problem of microstructures in a multiscale structure, Int. J. Numer. Methods Eng. 124 (2023) 1748–1772. https://doi.org/10.1002/nme.7186.
- [21] 藤岡みなみ, 下田昌利, A.L.I. Musaddiq Al, 所望変形を実現するマルチスケール構造の同時形状最適 化, 計算力学講演会講演論文集. 2021.34 (2021) 3. https://doi.org/10.1299/jsmecmd.2021.34.003.
- [22] R.S. Abass, M. Al Ali, M. Al Ali, Shape And Topology Optimization Design For Total Hip Joint Implant, in: Proc. World Congr. Eng., 2019. http://www.iaeng.org/publication/WCE2019/WCE2019_pp559-564.pdf.
- [23] M.H. Faidh-Allah, M.A.M. Kadem, OPTIMAL DESIGN OF MODERATE THICK LAMINATED COMPOSITE PLATES UNDER STATIC CONSTRAINTS USING REAL CODING GENETIC ALGORITHM, J. Eng. 17 (2011).
- [24] M. Al Ali, M. Shimoda, On concurrent multiscale topology optimization for porous structures under hygrothermo-elastic multiphysics with considering evaporation, Int. J. Numer. Methods Eng. (2023) 1–13. https://doi.org/10.1002/nme.7245.
- [25] M. Al Ali, M. Al Ali, A.Y. Sahib, R.S. Abbas, Design Micro-piezoelectric Actuated Gripper for Medical Applications, in: Proc. 6th IIAE Int. Conf. Ind. Appl. Eng. 2018, The Institute of Industrial Application

Engineers, 2018: pp. 175-180. https://doi.org/10.12792/iciae2018.036.

- [26] M. Al Ali, Toward fully autonomous structure design based on topology optimization and image processing, in: Proc. 6th IIAE Int. Conf. Intell. Syst. Image Process., The Institute of Industrial Applications Engineers, 2018.
- [27] M. Al Ali, A.Y. Sahib, M. Al Ali, Design Light Weight Emergency Cot With Enhanced Spinal Immobilization Capability, in: 6th Asian/Australian Rotorcr. Forum Heli Japan, 2017: pp. 1–11. https://vtol.org/store/product/design-light-weight-emergency-cot-with-enhanced-spinal-immobilizationcapability-12410.cfm.
- [28] M. Al Ali, A. Takezawa, M. Kitamura, Comparative study of stress minimization using topology optimization and morphing based shape optimization comparative study of stress minimization using topology optimization and morphing based shape optimization, in: Asian Congr. Struct. Multidiscip. Optim., 2018. https://www.researchgate.net/profile/Musaddiq-Al-Ali-2/publication/324559492_Comparative_Study_of_Stress_Minimization_Using_Topology_Optimization_an d_Morphing_Based_Shape_Optimization/links/5d6467ac92851c619d781329/Comparative-Study-of-Stress-Minimization.
- [29] M. Torisaki, M. Shimoda, M. Al Ali, Shape optimization method for strength design problem of microstructures in a multiscale structure, Int. J. Numer. Methods Eng. (2022).
- [30] M. Al Ali, Design offshore spherical tank support using shape optimization, in: Proc. 6th IIAE Int. Conf. Intell. Syst. Image Process., 2018. doi: 10.12792/icisip2018.051.
- [31] Musaddiq Al Ali, Toward fully autonomous structure design based on topology optimization and image processing, in: Proc. 6th IIAE Int. Conf. Intell. Syst. Image Process. 2018, 2018: pp. 1–7.