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Abstract. Solid structures that are light and heat conductive are significant in a variety of 

engineering applications. We investigated multiscale topology optimization for excessive 

lightweight heat-conductive porous structures and introduced a mathematical optimization 

model formulation for concurrently optimizing the macrostructure and the constitutive pores 

(microstructure) to maximize the design performance. The microscale is constructed utilizing 

the asymptotic homogenization approach as a representative volume element. During the 

optimization process, the effective heat conductivity tensor of the microstructure is assessed 

and utilized as the heat conductivity of the macrostructure for each iteration. To address the 

macro and microstructure connection, a sensitivity analysis of this concurrent optimization 

approach was developed. Moreover, the method of introducing initial predetermined design 

domain was investigated to attain fin-like design in order to despite heat efficiently. Results 

showed very good results for attaining excessive weight reduction with attaining high heat 

conductivity. Moreover, the method of predetermined design domains increased the 

performance significantly. 
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1 INTRODUCTION 

Thermal conductive solid structures, such as the thermal solid-state passive component, are 

widely employed in industrial applications, particularly as the demand for high-frequency 

transmission to boost data bandwidth grows (As in 5G cellphone communication and self-

driving cars). The standard design of the thermal dissipation component takes up a lot of room 

and adds unnecessary weight to the printed circuit board (PCB), which might cause the printed 

wires on the PCB to deteriorate over time. Add to that the change in high-frequency impedance 

characteristics caused by bending under weight or resonance interference with the fins. As a 

result, using a lightweight heat dissipater to solve the concerns listed above is extremely 

desirable. Topology optimization has been utilized successfully for designing multipurpose 

structures  [1–8]. Topology optimization is described as one of the most constantly evolving 

approaches for developing creative conceptual designs. Topologically optimized structures, 

which are associated with additive manufacturing, are gradually finding their way into 

industrial applications to manufacture lightweight structures with excellent utility. As a result, 

the purpose of structural topology optimization is to find the best and most reliable material 

distribution in order to maximize structural performance to weight ratio while satisfying various 

design requirements. In order to utilize topology optimization to maximize of heat conductivity 

of light weigh structures, minimizing thermal compliance was used, such that by minimizing 

the thermal compliance, the the stored thermal energy will decrease in the favour of heat 

conduction. Although, heat compliance is utilized successfully as an objective function in 

designing high conductivity solid problems, careful addressing of the design domain 

discretization [9], and optimization process are important in order to achieve an optimal design. 

For example, Iga et al [10] discussed the heat compliance problem and suggested introducing 

boundary influence to achieve a robust and extremum thermal diffusivity. Their argument was 

the non-sufficiency of depending on heat transfer coefficient. Such argument was also discussed 

in various intuitive formations in [11,12].Furthermore, for heat compliance minimization, the 

tree-like design was reported by researchers, yet, with increasing the design domain finite 

element resolution beyond million elements, a spike-like design was reported by Wadbro et al 

[13]. A detailed discussion of the optimality of heat compliance problem and tree like designs 

are presented in the paper of Yan et al [14]. In their work, several cases were studied and 

benchmarked to show how a good design variable interpolation scheme and a good 

piremetrization conditions as well as careful  choice of initial design domain can be utilized to 

achieve optimal solution. They showed that the tree like design is not the optimum design for 

attaining high thermal conductivity. In this work we are suggestion that by addressing the 

optimization of the heat conductivity of microstructure as well as the macrostructure, a better 

performance to weigh ratio can be achieved under the relevant design specifications. In other 

words, optimizing the material layout on the representative volume equivalent (RVE) as a 

secondary design domain within the macroscale will lead to extremum the materials to have a 

much higher performance to weight ratio. The early work of Bendsoe [15] was the successful 

establishment of designing microstructures with the inverse approach of the homogenization 

method. Additional work that tried to approach structural design by addressing the mesoscale 

aspect, investigated by many researchers such as  Zhou et al, [16] which addressed truss-like 

structure unit cell as the building block of the complex truss structure. Also, Hierarchal based 

topology optimization was a solution for scaling topology optimization to both micro and 
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macrostructure [17][18]. Concurrent micro and macro design method were investigated for 

maximizing structural stiffness [3,19–21]. There are few researches that addressed the 

multiscale concurrent optimization for maximizing thermal conductivity [22][23]. Moreover, 

the address of design methodology to attain fin-like structures (and not the tree-like thermal 

structures) using concurrent multiscale topology optimization is not yet introduced, therefore; 

this work aims to establish and examine the methods and the formulation of concurrent 

multiscale optimization for thermal conductivity problem, and the interpolation schemes 

between the macro and micro scale in the design system and introduced the predetermine initial 

design domain scheme to obtain a robust and optimum porous structure with high thermal 

conductivity. This paper is organized as the following: Section 2 is dedicated to the 

mathematical modeling of the multiscale problem. Section 3 is dedicated to presenting and 

discussing the numerical examples and finally, section 4 is dedicated to the conclusions. 

 

2 MATHEMATICAL MODELLING OF TOPOLOGY OPTIMIZATION FOR 

THERMAL CONDUCTION PROBLEM 

Concurrent topology optimization was performed inasmuch as macro and microsystems are 

simultaneously optimized for minimizing the heat compliance on both, the micro Mx  and 

macroscale mx . Macro and microscale design domains are discretized using two distinctive 

finite element systems. In this paper, we used bilinear structured mesh for both systems. When 

x is equal to 1, this means that the corresponding element is a solid while if it is zero, it means 

that the element is representing a void, as shown in Eq. (1). 

 

M,m

1

0

Design material

Void


= 


x                                              (1) 

 

Concurrent design of multiscale problem requires adopting homogenization method for two 

purposes; the first purpose is the calculation of effective properties to use for the 

macrostructure. The second purpose is to use inverse homogenization as a tool to design the 

microstructure concurrently with the macrostructure. 

 

2.1 Homogenization approach 

Homogenization has been performed numerically to evaluate the effective properties, which 

is the homogenized conductivity tensor H of the micro design domain. By definition, the micro 

design domain is an RVE that is statistically homogenous in comparison to the macroscale 

domain. The material distribution, the behaviour of the property to be estimated inside the 

material, and the material's interface layer behaviour all influence the effective properties. The 

thermal conductivity is assumed to be equally distributed throughout the material in this case. 

Furthermore, the interface layer effect has been neglected such that the RVE is considered to 

be a single-phase infinitesimal solid material and void. By utilizing the numerical 

homogenization method, the effective properties are calculated for the microstructure and used 
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to construct the finite element of the macroscale domain. Considering the two-phase 

microstructure with overall thermal conductivity as of k , k=1,2 which denote to the material’s 

thermal conductivity tensors associated with RVE phases. The general steady state conduction 

heat flow is formulated by Eq. (2). 

T
.q(T) , x

 

  
 = −    

  
                             (2) 

Where q  is the heat transfer rate and 
T






 is the temperature gradient.   represents the 

material’s thermal conductivity constant. For multiscale problem, heat conductivity of the 

macroscale is the homogenized heat conductivity tensor that is obtained from the microscale.  

 
Figure 1: Homogenized thermal properties representation of the micro for the macro scale. 

 

For evaluating the homogenized (effective) heat conductivity tensor, Eq. (3) is used: 

( )H 0( ) *( )1 kl kl

ijqp qp qp

V

dV
V

= −Λ Λ G G                                    (3) 

Where 0( )kl

qpG represents the unit temperature gradient test, and *( )kl

qpG  periodic characteristic 

gradient. Moreover, the finite element representation of the steady state heat conduction 

problem is taking the form:  

=P KT                                              (4) 
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Where P is the nodal thermal load, T is the nodal temperature and K  is the global heat 

conductivity matrix. Topology optimization of design high thermal conductive structure to 

weight ratio is achieved by minimizing heat compliance 
HC . 

H

TC = P T                                               (5) 

Here, the heat compliance in terms of the macro and micro design variables is given by Eq. 

(6). 

( ) ( )H M m M m

1

, ,
N

T

i i i

i

C
=

=x x T K x x T                                     (6) 

Where Ti and Ki represents the nodal temperature vector, and the thermal conductivity matrix 

of the ith element with respect to the macrostructure of the total number of the element equal to 

N. The general form of the thermal conductivity matrix is taking the form:  

T

V

dV= K D ΛD                                                 (7) 

Where D  is the conversion matrix of temperature gradient to nodal temperature. For 

microstructure domain, the material’s thermal conductivity tensor H
Λ  is associated with heat 

conductivity tensor of the based material 0Λ such that: 

H

m 0

p=Λ x Λ                                         (8) 

H
Λ  is calculated using the homogenization method and used to establish the elemental heat 

conductivity tensor of the macroscale macroΛ with a similar material interpolation scheme as 

for the microstructure system. 

H

M

p

macro =Λ x Λ                                                  (9) 

As such, the formulation of concurrent topology optimization of minimizing heat 

compliance is taking the form: 
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 ( )

M m M m

H M m

M m

M M M M M

m m m m m

, (M 1,2,.., ;m 1,2,.., )

min: ( , )

s. t . ,

, 0 1

, 0 1

dM

dm

dM

dm

find N N

C

d v

d v





= =

=

    

    





x x

x x

K x x T P

x x x x

x x x x

             (10) 

Here, MN , and mN are the element number of the macro- and the microscale structure 

respectively.  Mv  and mv  are the volume fraction of the design variable Mx  and mx within the 

macro and micro design domains ( dM  and dm  respectively). Figure 1 is showing the 

modelling of multiscale topology optimization for stiffness and heat conductivity problems.  

 

2.2 Sensitivity analysis and optimization method 

Sensitivity analysis plays a major role in achieving the global extremum solution. First order 

sensitivity analysis (Eq. 11) is adopted to be performed for each iteration.  

 H

T TC = +P T P T   (11) 

T  can be obtained by differentiating Eq. (4) and arranging and separating the variables 

which gives: 

 
1 1( )− −= −T K P K KT   (12) 

Now, substituting Eq. (12) into (11) gives: 

 H 2 T TC = −P T T KT   (13) 

The current problem has a fixed load condition one with the design domain, therefore; the 

problem is heat load independent. This will lead to eliminating the first term of Eq. (13) which 

reduce the first order sensitivity of the heat compliance to:  

 H

TC = −T KT       (14) 

Now writing Eq. (14) in terms of both, macro and micro design variables give: 
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 ( )H M m M M m M, ( , )TC = −x x T K x x T                                  (15) 

Eq. (15) has two parts, first is the derivative with respect Mx  which is used to update the 

macroscale design domain. This is given in Eq. (16). 

 ( ) ( )
M

1 HH
H M M M

M

p T TC
C p d−




= = − 
 x x T D Λ D T
x

     (16) 

The second part is the derivative with respect to mx which is controlling the micro design 

domain heuristic process which is given in Eq. (17).                                                                                                                                                                                                                           

 ( )
m

H

H
H m m

m m

T TC d
C d

d



= = − 
 

Λ
x T D D T

x x
                (17) 

The derivative of the homogenized material’s thermal conductivity tensor with respect to 

micro design variable
H

m

d

d

Λ

x
 can be determined as: 

   ( ) ( ) ( )
m

H
1

m m

m m

T pd p
d

d

−



= −  − 
 

Λ
I DT x I DT

x
           (18) 

Optimization method that used in this work is Solid Isotropic Material with Penalization 

(SIMP) method. Furthermore, optimality criteria method is used to update the design variables. 

To guarantee that solutions to the topology optimization problem exist and that checkerboard 

problem do not arise, a sensitivity filter is introduced to modify the sensitivities ( )MHC x and 

( )mHC x as follows:  

1

1

1ˆ
N

f fN
fe f

e f

f

C C
C H

H =

=

 
= =
 




x
x x

x

                                  (19) 

Where fH is the convolution operator to perform the modification, ex  is the design variable 

at which the sensitivity is calculated, and fx . The fH  is defined as  
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( , ), { ( , ) }fH r dist e f f N dist e f r= −                       (20) 

After modifying the sensitivity, the following is a heuristic updating technique that is identical 

to the one employed in this paper: 

max(0, ) max(0, )

max(0, ) max(1, )

e e e e

updated

e e e e e

e e

if B

if B

B Otherwise







 

 

 −  −


= +  −



x x x

x x x x

x

      (21) 

where  denotes a positive search step. Moreover,   which is equal to 1/2 denotes a numerical 

damping coefficient, and eB denotes the optimality condition ( 
e e

C VL −
 x x

), where L

here is a Lagrangian multiplier, and 
e

V
x

is the volumetric topological derivative. Finally, 

the flowchart of concurrent multiscale topology optimization for maximizing heat conductivity 

is shown in figure 2. 

 

 
Figure 2: Flowchart for concurrent multiscale topology optimization for maximizing heat conductivity. 
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3 NUMERICAL INVESTIGATIONS 

3.1 Concurrent multiscale versus macroscale optimization 

The numerical investigation in this section is dedicated to investigating the macroscale 

optimization versus the multiscale optimization. First, consider a macro design domain of 200 

by 200 elements in the x and the y-directions, with a volume fraction of 0.5 (i.e., 50% weight 

reduction). Also, a uniform distributed heat load of 0.1 for the whole area is applied while the 

boundary of an upper left side has a heat sink in the middle of the left side (As shown in Figure 

3 a), and the remaining outer boundaries are adiabatic. Minimizing the heat compliance of only 

the macroscale has the design shown in Figure. 4 a. Now reducing the volume fraction to 0.25 

(i.e., 75% weight reduction) for the same design problem is raising the final heat compliance 

due to excessive materials’ reduction (as shown in Figure 4 b). By applying the concurrent 

optimization for the macro and micro scales of the initial design domain, volume reduction can 

be achieved on both, the micro (that is shown in Figure 3 (b)) and macro scales. 

 

 
Figure 3: Design domain in (a) macro and (b) microscale 

 

 Therefore; by assuming that each element will have a volume equal to the volume of 

microscale, the multiscale optimization of 50% weight reduction on both macro and microscale 

will match the 75% total volume reduction. The results of 75% total volume reduction of the 

multiscale optimization (Figure 4 c) showed better performance in terms of minimizing heat 

compliance compared to the similar total 75% volume reduction on the macroscale alone.  

 

3.2 Concurrent multiscale optimization with predetermined initial design domain 

By introducing an initial predetermine branched design domains for the same problem of 

section (3.1), a fin-like structure is attained for the final design (as shown in figure 5). The 

performance of designing is improved significantly by optimizing the multiscale problem for 

the initial design domain by increasing the number of the introduced initial branches. As shown 

in figures 5 (b)-(d), the heat compliance minimization is improved compared to the multiscale 

design problem of section (3.1).   
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Figure 4:  Optimization of (a) the case of 50% volume fraction on the macroscale, (b) the 25% volume 

reduction case on the macroscale, and (c) the case of total 25% volume reduction on both macro and microscale. 
 

 

Figure 5:  Optimization of (a) the case of fully distributed initial design domain (b) prescribed initial design 

domain of 5 branches, (c) prescribed initial design domain of 9 branches, and (d) prescribed initial design 

domain of 20 branches. 
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4 CONCLUSIONS 

Concurrent multiscale topology optimization of high heat conductivity for macro and 

periodic microstructure is presented in this paper. The goal is to show how to use a multiscale 

formulation and to look at the design requirements. Minimizing heat compliance was chosen as 

a simple example of the concurrent multiscale optimization's efficiency in attaining goal 

function reduction. On both macro and periodic microstructure, formulations were devised for 

the multiscale issue. The asymptotic homogenization approach was utilized to determine the 

macrostructure's effective heat conductivity tensor as well as to produce the microstructure. 

Optimizing the multiscale showed better results than for optimizing the macroscale alone, 

Furthermore, a high weight reduction was attained with superior heat compliance minimization. 

Moreover, From the results introduced in section 3.2, we conclude that our method of 

introducing predetermine branches to the design macroscale of the multiscale problem is 

promoting the final design to obtain the desirable fin-like structures with minimal mathematical 

complexity. 
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