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Abstract. Structural light-weighting is vital for increasing energy efficiency and reducing CO2 

emissions. One of the mechanical structures that are used in numerous applications and can 

utilize light weighting is the displacement inverter. The displacement inverter is producing a 

mechanical reaction as the reverse of the input actuating action. In this research, multiscale 

topology optimization of compliance mechanism is used to design a lightweight displacement 

inverter. In this research, a hybrid topology optimization of SIMP for macroscale and ESO for 

microscale was used to obtain porous displacement inverter designs. Several numerical 

examples were investigated, and an experimental case was conducted by printing the design 

displacement model using 3d printer. 
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1 INTRODUCTION 

A compliant mechanism is a unique type 

of hingeless mechanism that achieves 

movement by relying on the elastic 

deformation of the entire or a portion of the 

mechanism itself. Compliant mechanisms 

are gaining popularity in the sectors of 

micro-electro-mechanical systems, medical 

devices, and aerospace due to their low 

noise, high precision, and lack of 

lubrication. The displacement inverter is 

one of the practical uses of the compliant 

mechanism. As the input actuating action is 

reversed, the displacement inverter 

produces a mechanical reaction. A 

lightweight displacement inverter is 

designed using multiscale topology 

optimization of compliance mechanisms in 

this study.  

Topology optimization is presented as 

one of the rapidly advancing methodologies 

for achieving innovative designs in many 

applications and various physical 

aspects[1][2][3][4]. Associated with 

additive manufacturing topologically 

optimized structures increasingly find the 

way in industrial applications to produce 

lightweight structures with high 

functionality. Therefore, the goal of 

structural topology optimization is to 

discover the best and robust material 

distribution to maximize structural 

performance to weight ratio while meeting 

various design conditions. The 

homogenization method was one of the first 

continuum topology optimization methods 

for constructing compliant systems [5]. By 

introducing a material density function in 

each discretized element, which is 

composed of an infinite number of 

randomly dispersed holes, this approach 

transforms computationally costly 

structural topology optimization into 

efficient multiscale optimization problems. 

The mechanical effective characteristics of 

materials are determined using the 

homogenization theory. There are two types 

of ways for introducing microstructures: 

methods based on rank laminate composites 

and methods based on microcells with 

internal voids. For the former, the 

homogenization equation can be solved 

analytically, whereas, for the latter, 

numerical methods are frequently used to 

solve the homogenization problem. The 

homogenization method has the advantage 

of being able to put mathematical bounds on 

theoretical structural performance[6]. 

Ananthasuresh et al [7] has extended the 

homogenization methodology to the design 

of compliant mechanisms. However, the 

results appear to be a mean compliance 

design rather than a compliant mechanism 

design because the resulting mechanisms 

are not flexible enough. As a result, 

Nishiwaki et al. [8] developed a 

homogenization-based topology 

optimization method for the design of 

compliant mechanisms that includes 

flexibility. This method developed a multi-

objective function using mutual mean 

compliance to successfully describe the 

flexibility. As the direct derivative of 

homogenization method, SIMP (solid 

isotropic microstructure with penalization) 

has been utilized for designing compliant 

mechanisms [9][10][11][12]. Moreover, the 

evolutionary structural optimization (ESO) 

approach was created on the simple premise 

of gradually reducing inefficient material 

from a structure in order to achieve the best 

structure possible. The basic philosophy 

behind ESO is the direct removal of the so-

called “inefficient material” which is 

leading to structure to form the optimal 

design. It is firstly introduced by Min and 

Steven [13]. The cost function sensitivity is 
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used to update the decision variables 

[14][15]. Updating is depending on the 

element sensitivity number obtained by 

differentiating the objective function such 

that of solid elements and soft elements is 

equal to the elemental sensitivity and zero, 

respectively. And As for SIMP, ESO was 

investigated for designing compliant 

mechanisms [16][17][18][19]. 

Furthermore, there are several 

methodologies that has been used in 

topology optimization such as Level set 

[20][21][22][23][14], H1 gradient [24][25], 

mesh morphing [26] ,and Phase field 

method [27]. The multiscale compliant 

mechanism has gained little attention from 

researchers due to the difficulty of attaining 

robust designs. Moreover, the grayscale 

nature of such problem when it is optimized 

using the SIMP method is limiting 

significantly attaining extrema due to the 

fluctuating effective properties for the 

grayscale elements at the beginning of the 

optimization process. The research of 

Sivapuram et al [28] tried to overcome such 

problem by using level set method to 

successfully design compliant mechanism. 

The binarized nature of the used zero level 

set method eased the attaining a robust 

design. Since this work, the multiscale 

concurrent optimization of compliant 

mechanism has not investigated. Moreover, 

hybrid method of SIMP and ESO has not 

implemented for concurrently design 

extreme lightweight multiscale compliant 

mechanism with microscale. As such, in 

this research, hybrid design methods of 

SIMP for macroscale and ESO for 

designing microscale is implemented in 

order to design porous displacement 

inverter. As a result, the effective properties 

obtained using the homogenization for the 

microstructure are evaluated with a 

dedicated finite element model, while the 

macrostructure's effective properties are 

calculated using a different finite element 

model. The adjoint approach is used to 

implement the sensitivity analysis 

efficiently for the concurrent design 

function in this study, which reduces the 

computational cost significantly. This paper 

is organized as the following: Section 2 is 

dedicated to the mathematical modelling of 

the multiscale problem. Section 3 is 

dedicated to presenting and discussing the 

numerical examples and finally, section 4 is 

dedicated to the conclusions. 

 

2 EFFECTIVE ELASTICITY 

TENSOR AND MECHANICAL 

COMPLIANCE DERIVATIVE FOR 

MULTISCALE 

Concurrent topology optimization was 

performed inasmuch as macro and 

microsystems are simultaneously 

optimizing the objective function on both, 

the micro Mρ  and macroscale mρ . Macro 

and microscale design domains are 

discretized using two distinctive finite 

element systems. In this paper, we used 

bilinear structured mesh for both systems. 

When ρ is equal to 1, this means that the 

corresponding element is a solid while if it 

is zero, it means that the element is 

representing a void, as shown in Equation 

(1). 

 

M m

1
,

0

Design material

Void


= 


ρ ρ   (1) 

 

Concurrent design of multiscale 

problems necessitates the employment of a 

homogenization approach for two reasons. 

The first is to calculate the macrostructure's 

effective properties. The second goal is to 

apply inverse homogenization to create the 

microstructure and macrostructure 

simultaneously. 
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Let’s start the investigation for the 

evaluation of the effective elastic tensor, 

and starting from the assumption that using 

homogenization approach, Hooks law in 

tensor for 2D problem is taking the tensor 

form shown in Equation (2) 
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x x

y y

xy xy

E E E

E E E

E E E

 

 

 

    
    

=    
        

               (2) 

 To calculate effective elastic tensor 
H

ijklE  

of the RVE of a volume V Equation (3) is 

used: 

 

 

 

( )H 0( ) *( )1 kl kl

ijqp qp qp

V

dV
V

= −E E ε ε                (3) 

Where   ijqpE is the elastic tensor of the 

composite materials that consisting the 

RVE, 
0( )kl

qpε is the linearly independent unit 

strain test (as shown in figure 1).
*( )kl

qpε is 

periodic characteristic strain which is 

obtained by solving Equation (4)  

 

*( ) 0( )

m m

kl kl

ijqp qp n ijqp qp ndV dV 
 

 =  E ε E ε        (4) 

Where n is the arbitrary virtual 

displacement associated with unit strain 

case. Equation (3) is solved for the three 

cases of kl=11, 22, 12 respectively within 

Equation (4) (As shown in figure 1). 

Returning to macroscale of the problem; the 

structure compliance in terms of the micro 

Figure 1: The three mechanical deformation modes of 2D RVE 
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and macro design variables ( Mρ  and mρ  

respectively) is given by 

( ) ( )M m M m

1

1
, ,

2

N
T

mech i i i

i

C
=

= ρ ρ U K ρ ρ U        (5) 

Where Ui and Ki represents the nodal 

displacement, and the stiffness matrix of the 

ith element with respect to the 

macrostructure of the total number of the 

element equal to N. The general form of the 

elemental stiffness matrix is taking the 

form:  
T

V

dV= K B EB                                     (6) 

Where B is the strain displacement matrix, 

and E  is the elastic tensor of the element. 

For microstructure case, the elastic tensor 

microE  is formulated to comply with the 

SIMP interpolation scheme such that, the 

penalized design variable mρ  to power (

3p = ) [29] is associated with the elastic 

tensor of the based material 0E such that: 
H 3

m 0=E ρ E                                           (7) 

The associated effective elastic tensor of the 

microstructure H
E , which is calculated 

using homogenization method, is used to 

establish the elemental elastic tensor of the 

macroscale macroE with similar material 

interpolation scheme as for the 

microstructure system. 
3 H

mmacro =E ρ E                                     (8) 

The generalized model of mechanically 

activated compliant mechanism problem is 

linearly implemented by assuming the 

actuator with in linear strain limits, 

subjected to spring of stiffness Kin and a 

force Fin at the input point A. The objective 

function is maximizing the displacement at 

the output point B.  



max:

s.t .

, (0,1]

dM

out

d v


=

   

ρ
U

KU F

ρ ρ ρ ρ

      (9) 

 
Figure 2: Compliant mechanism design problem 
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(10) 

Here, MN , and mN are the element 

number of the macro- and the microscale 

structure respectively.  Mv  and mv  are the 

volume fraction of the design variable Mρ  
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and mρ within the macro and micro design 

domains ( dM  and dm  respectively).  

2.2 Sensitivity analysis and optimization 

method 

Taking into consideration that in 

our linear analysis, the mechanical loading 

vector F is design independent, the 

sensitivity analysis is given in equation 11  

Tout

in out

 
=

 

U K
U U

ρ ρ
                            (11) 

 

while 




K

ρ
 in term of macroscale is  

( )

M

H

M

M

M M

T d



= 

 
E ρK

B B
ρ ρ

              (12) 

And in term of microscale design variable  

( )

m

H

m

m

m m

T d



= 

 
E ρK

B B
ρ ρ

              (13) 

The derivative of the homogenized 

material’s elastic tensor with respect to 

micro design variable
( )H

m

m





E ρ

ρ
 is: 

( )
( ) ( )

m

H

m 1 0 0( ) *( )

m m

m m

p kl kl

ijqp qp qp

p
d−




= − 

  
E ρ

ρ E ε ε
ρ

(14) 

The optimization method used in this 

work is the SIMP method for optimizing the 

macrostructure and the ESO method for 

optimizing the microstructure. This hybrid 

form of optimizing allowed the attaining of 

good designs as well as lowering the 

computational cost significantly. 

Furthermore, optimality criteria method is 

used to update the design variables. To 

guarantee that solutions to the topology 

optimization problem exist and that 

checkerboard problem do not arise, a 

sensitivity filter is introduced to modify the 

sensitivities ( )MC x and ( )mC x as 

follows:  

1

1

1ˆ
N

f fN
fe f

e f

f

C C
C H

H =

=

 
= =
 




x
x x

x

          (15) 

Where fH is the convolution operator to 

perform the modification, ex  is the design 

variable at which the sensitivity is 

calculated, and fx . The fH  is defined as  

( , ), { ( , ) }fH r dist e f f N dist e f r= −   (16) 

After modifying the sensitivity, the 

following is a heuristic updating technique: 

max(0, ) max(0, )

max(0, ) max(1, )

e e e e

updated

e e e e e

e e

if B

if B

B Otherwise







 

 

 −  −


= +  −



x x x

x x x x

x

  

(17) 

where  denotes a positive search step. 

Moreover,   which is equal to 1/2 denotes 

a numerical damping coefficient, and eB

denotes the optimality condition: 

e

e e

C V
B L

 
= −

 x x
                              (18) 

Where L here is a Lagrangian multiplier, 

and 
e

V

x
is the volumetric topological 

derivative. The general algorithm for 

concurrent multiscale and hybrid topology 

optimization for displacement inverter is 

illustrated in figure 3. 
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3 NUMERICAL INVESTIGATIONS 

3.1 Concurrent multiscale displacement 

inverter designs 

In this section, we are investigating several 

examples of displacement inverters. The 

first model is having 150 and 200 mm in the 

x and the y directions (As shown in Figure 

4 (a)). The multiscale design is shown in 

Figures 4 (b), (c), and (d). As shown in 

Figures 5 (a) and (b) the microscale is 

recirculating the stored strain energy inside 

it in order to distribute it on the macroscale 

as a response to the applied  

 
Figure 3: Flowchart of concurrent multiscale 

displacement inverter optimization 

force to give the prescribed and desired 

displacement reaction. Furthermore, two 

other cases are investigated (i.e., cases (e) 

and (i) in Figure 4). 
 

3.2 Experimental study 

To verify the design of our concurrent 

multiscale hybrid topology optimization of 

the porous displacement inverter, a printed 

model of the first case that is shown in  

Figure 4 (a) is prepared.  The material  

used was an Acrylonitrile Butadiene 

Styrene (ABS). The model was prepared 

using Stratasys F170 3D printer. Figure 6 

presents the prepared specimen under 

testing displacement. As shown in figure 6, 

by inserting a displacement (-Δ) from the 

top, the lower point is moving with (Δ) 

upward. 

 
 

4 CONCLUSIONS 

The numerical examples showed a good 

design response of the microscale design 

with the spatial configuration and the 

boundary condition of the design domain on 

both macro and microstructure. 

Furthermore, this study found that by 

addressing microscale design with the 

concurrent optimization process, it is 

possible to get a desirable spatial 

configuration of materials while reducing 

weight. the spatial arrangements for the 

various scenarios revealed an elaboration 

for distributing strain energy in the most 

efficient manner possible in relation to 

macrostructure design. Our hybrid form of 

concurrently utilizing SIMP for designing 

macroscale and ESO for designing 

microscale allowed the attaining of good 

designs as well as lowering the 

computational cost significantly. As a 
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result, the proposed design process has the 

potential to produce durable and new 

lightweight and porous displacement 

inverters’ designs with unique and high 

adaptability of elastic properties. Moreover, 

the concurrent multiscale design is verified 

experimentally. 

Figure 4: Designs domain and the macro and microscale designs 

 

Figure 5: Concurrent multiscale design of displacement inverter (a) under 

compression (b) under tension 
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